Molybdenum(VI) salts convert the xanthine oxidoreductase apoprotein into the active enzyme in mouse L929 fibroblastic cells.

نویسندگان

  • F Falciani
  • M Terao
  • S Goldwurm
  • A Ronchi
  • A Gatti
  • C Minoia
  • M Li Calzi
  • M Salmona
  • G Cazzaniga
  • E Garattini
چکیده

The mouse L929 fibroblastic cell line presents low, but detectable, levels of the mRNA encoding xanthine oxidoreductase under basal conditions, and it responds to type I and type II interferons by inducing the expression of the transcript [Falciani, Ghezzi, Terao, Cazzaniga, and Garattini (1992) Biochem. J. 285, 1001-1008]. This cell line, however, does not show any detectable amount of xanthine oxidoreductase enzymic activity, either before or after treatment with the cytokines. Molybdenum(VI) salts, in the millimolar range, are capable of activating xanthine oxidoreductase in L929 cells both under basal conditions and after treatment with interferon-alpha. The increase is observed in mouse L929 as well as in clones derived from it, but not in many other human and mouse cell lines. The induction observed in L929 cells is post-translational in nature and it is insensitive to cycloheximide, indicating that the molybdenum ion converts a pool of inactive xanthine oxidoreductase apoenzyme into its holoenzymic form. When grown in the absence of sodium molybdate, the L929 cell line has undetectable intracellular levels of the molybdenum cofactor, since the cell extracts are unable to complement the nitrate reductase defect of the nit-1 mutant of Neurospora crassa. L929 cells grown in the presence of millimolar concentrations of sodium molybdate, however, become competent to complement the nit-1 defect. L929 cells accumulate molybdenum ion inside the intracellular compartment as efficiently as TEnd cells, a mouse endothelial cell line that expresses xanthine oxidoreductase activity both under basal conditions and after treatment with interferon-gamma, suggesting that L929 cells have a defect in one or more of the metabolic steps leading to the synthesis of the molybdenum cofactor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inborn errors of molybdenum metabolism: combined deficiencies of sulfite oxidase and xanthine dehydrogenase in a patient lacking the molybdenum cofactor.

A patient suffering from a combined deficiency of sulfite oxidase (sulfite dehydrogenase; sulfite:ferricytochrome c oxidoreductase, EC 1.8.2.1) and xanthine dehydrogenase (xanthine:NAD+ oxidoreductase, EC 1.2.1.37) is described. The patient displays severe neurological abnormalities, dislocated ocular lenses, and mental retardation. Urinary excretion of sulfite, thiosulfate, S-sulfocysteine, ta...

متن کامل

Interferons induce xanthine dehydrogenase gene expression in L929 cells.

Human interferon-alpha A/D (Bg/II) (IFN-alpha A/D) and mouse interferon-gamma (IFN-gamma) are shown to induce xanthine dehydrogenase (XD) mRNA in L929 fibroblastic cells. XD mRNA accumulation after IFN-alpha A/D treatment is relatively fast, being already evident after 4 h and reaching its maximum after 24 h. IFN-alpha A/D is active in inducing XD mRNA at 0.1 unit/ml and it is maximally active ...

متن کامل

The first mammalian aldehyde oxidase crystal structure: insights into substrate specificity.

BACKGROUND Aldehyde oxidases have pharmacological relevance, and AOX3 is the major drug-metabolizing enzyme in rodents. RESULTS The crystal structure of mouse AOX3 with kinetics and molecular docking studies provides insights into its enzymatic characteristics. CONCLUSION Differences in substrate and inhibitor specificities can be rationalized by comparing the AOX3 and xanthine oxidase stru...

متن کامل

Xanthine Dehydrogenase Active Site: Chiral Switching and Substrate Coordination

Analysis of electronic, structural and mechanistic parameters of the enzyme-substrate reaction of xanthine oxidase, a member of the xanthine dehydrogenase class of mono-molybdopterin oxidoreductive enzymes, shows that the molybdenum center in the enzyme active site acts as a reversible chiral switch. The metal center cycles from the (S)-absolute configuration, SPY-5-42-A, in the fully oxidized ...

متن کامل

The crystal structure of xanthine oxidoreductase during catalysis: implications for reaction mechanism and enzyme inhibition.

Molybdenum is widely distributed in biology and is usually found as a mononuclear metal center in the active sites of many enzymes catalyzing oxygen atom transfer. The molybdenum hydroxylases are distinct from other biological systems catalyzing hydroxylation reactions in that the oxygen atom incorporated into the product is derived from water rather than molecular oxygen. Here, we present the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 298 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1994